ESMO 2022

Updated ARROW data: pralsetinib in patients with advanced or metastatic RET-altered thyroid cancer

Mimi I Hu¹, Vivek Subbiah², Aaron S Mansfield³, Matthew H Taylor⁴, Martin Schuler⁵, Viola W Zhu⁶, Julien Hadoux⁷, Giuseppe Curigliano⁸, Lori J Wirth⁹, Elena Garralda¹⁰, Douglas Adkins¹¹, Yann Godbert¹², Myung-Ju Ahn¹³, Philippe Cassier¹⁴, Byoung Chul Cho¹⁵, Chia-Chi Lin¹⁶, Teresa Barata¹⁷, Alena Zalutskaya¹⁸, Astrid Scalori¹⁹, Marcia S Brose²⁰

BACKGROUND

- Oncogenic RET alterations are targetable biomarkers in thyroid cancer.¹
- Multikinase inhibitors (MKI) are therapeutic options in medullary thyroid cancer ([MTC]; cabozantinib and vandetanib) and differentiated thyroid cancer (cabozantinib, lenvatinib and sorafenib); however, MKI-related adverse events leading to dose reductions and drug discontinuation are frequent.^{2–4}
- Praisetinib is a potent, selective RET kinase inhibitor¹ that has shown clinical activity in patients with RET-altered thyroid cancer in the phase 1/2 ARROW trial (NCT03037385; data cut-off: 12 Apr 2021; intention-to-treat [ITT] population):^{5,6}
- Overall response rate (ORR) by blinded independent central review (BICR) was 51% in patients with *RET*-mutant MTC previously treated with cabozantinib and/or vandetanib (C/V), 72% in treatment-naïve patients with RET-mutant MTC, and 86% in patients with previously treated *RET* fusion-positive thyroid cancer (*RET*-fp TC).
- We present updated data for these three cohorts (data cut-off: 18 Oct 2021).

METHODS

- Adult patients with RET-altered locally advanced/metastatic thyroid cancer who had enrolled in ARROW and initiated oral pralsetinib at 400 mg QD prior to the enrolment cut-off (18 Feb 2021) were included in the ITT population
- The RET-altered measurable disease population included patients from the ITT population who had measurable disease at baseline (by BICR per RECIST v1.1).
- The *RET*-altered thyroid cancer **safety population** comprised all patients who had received ≥1 dose of pralsetinib 400 mg QD prior to the data cut-off.
- Phase 2 primary endpoints: ORR by BICR per RECIST v1.1, and safety.
- Key secondary endpoints: duration of response (DoR), progression-free survival (PFS) and overall survival (OS).
- ORR and DoR were evaluated in both the measurable disease and the ITT populations; PFS and OS were only assessed in the ITT population.

iii RESULTS

Patient population

 At data cut-off, the ITT population included 145 patients with RET-mutant MTC (prior C/V: n=67; other prior systemic therapy: n=11; treatment naïve: n=67) and 25 patients with RET-fp TC who had received prior systemic therapy, including radioactive iodine (Table 1).

Table 1. Patient demographics and baseline characteristics (ITT population)

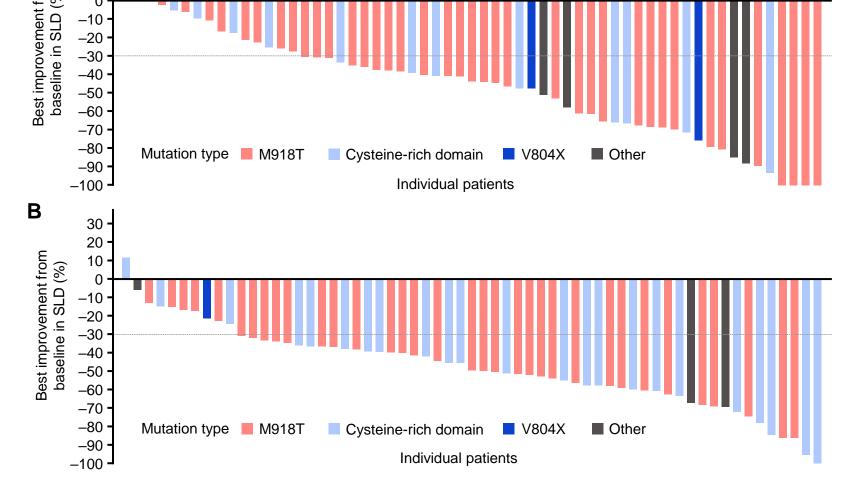
	RET-mutant MTC: prior C/V (n=67)	RET-mutant MTC: treatment naïve (n=67)	RET-fp TC: prior systemic treatment (n=25)
Median age, years (range)	59 (25–83)	55 (18–81)	60 (23–74)
Female, n (%)	23 (34.3)	24 (35.8)	16 (64.0)
Race, n (%) White / Asian Other or not reported	55 (82.1) / 3 (4.5) 9 (13.4)	27 (40.3) / 37 (55.2) 3 (4.5)	16 (64.0) / 8 (32.0 1 (4.0)
ECOG PS, n (%) 0 1 2*	18 (26.9) 46 (68.7) 3 (4.5)	38 (56.7) 29 (43.3) 0	11 (44.0) 14 (56.0) 0
Prior systemic therapy in any setting, n (%) Chemotherapy / immunotherapy C/V / L/S Radioactive iodine	7 (10.4) / 3 (4.5) 67 (100.0) / 5 (7.5) 4 (6.0)	No prior antineoplastic treatment	1 (4.0) / 0 3 (12.0) / 14 (56.0 23 (92.0)
No. of prior lines of systemic therapy, n (%) 1 / 2 ≥3	31 (46.3) / 24 (35.8) 12 (17.9)	No prior antineoplastic treatment	10 (40.0) / 5 (20.0 10 (40.0)
Baseline CNS metastases, n (%)	7 (10.4)	6 (9.0)	10 (40.0)

*ECOG performance status of 2 was permitted before a protocol amendment. C/V, cabozantinib and/or vandetanib; CNS, central nervous system; ECOG PS, Eastern Cooperative Oncology Group performance status; ITT, intention-to-treat; L/S, lenvatinib and/or sorafenib; MTC, medullary thyroid cancer; RET-fp TC, RET fusion-positive thyroid cancer.

Table 2. Overall efficacy

	Measurable disease population		ITT population			
	RET- mutant MTC: prior C/V (n=61)	RET- mutant MTC: treatment naïve (n=62)	RET-fp TC: prior systemic treatment (n=22)	RET- mutant MTC: prior C/V (n=67)	RET- mutant MTC: treatment naïve (n=67)	RET-fp TC: prior systemic treatment (n=25)
ORR *, n (%) [95% CI]	34 (55.7) [42.4–68.5]	48 (77.4) [65.0–87.1]	20 (90.9) [70.8–98.9]	35 (52.2) [39.7–64.6]	48 (71.6) [59.3–82.0]	21 (84.0) [63.9–95.5]
CR	1 (1.6)	4 (6.5)	3 (13.6)	2 (3.0)	4 (6.0)	4 (16.0)
PR	33 (54.1)	44 (71.0)	17 (77.3)	33 (49.3)	44 (65.7)	17 (68.0)
SD	23 (37.7)	11 (17.7)	2 (9.1)	27 (40.3)	13 (19.4)	4 (16.0)
PD	2 (3.3)	2 (3.2)	0	2 (3.0)	2 (3.0)	0
Not evaluable	2 (3.3)	1 (1.6)	0	3 (4.5)	4 (6.0)	0
Median DoR*†, months, [95% CI]	25.8 [18.0–NE]	NR [NE–NE]	23.6 [15.1–NE]	25.8 [18.0–NE]	NR [NE–NE]	23.6 [15.1–NE]
Events, n (%)	18 (52.9)	8 (16.7)	8 (40.0)	18 (51.4)	8 (16.7)	8 (38.1)
18-month rate, % [95% CI]	67.5 [50.9–84.1]	79.8 [65.9–93.7]	50.2 [22.0–78.3]	68.5 [52.3–84.7]	79.8 [65.9–93.7]	53.9 [27.3–80.6]

*Assessed by central radiology review per RECIST v1.1. †DoR analysis includes patients with confirmed CR/PR; DoR results per EMA censoring rules. C/V, cabozantinib and/or vandetanib; CI, confidence interval; CR, complete response; DoR, duration of response; EMA, European Medicines Agency; ITT, intention-to-treat; MTC, medullary thyroid cancer; NE, not estimable; NR, not reached; ORR, overall response rate; PD, progressive disease; PR, partial response; RECIST, Response Evaluation Criteria In Solid Tumors; RET-fp TC, RET fusion-positive thyroid cancer; SD, stable disease.


Overall efficacy

- In the ITT population ORR was (Table 2):
- 52.2% (95% CI: 39.7–64.6) in patients with *RET*-mutant MTC who had received prior C/V
- 71.6% (95% CI: 59.3–82.0) in treatment-naïve patients with *RET*-mutant MTC 84.0% (95% CI: 63.9–95.5) in patients with previously treated RET-fp TC.
- Similar results were observed in the measurable disease population (**Table 2**).
- Responses were observed regardless of the *RET* mutation genotype (**Figure 1**).
- In the ITT population, median DoR was (Table 2):
- 25.8 months in patients with RET-mutant MTC who had received prior C/V
- Not reached in treatment-naïve patients with RET-mutant MTC
- 23.6 months in patients with previously treated RET-fp TC.

Survival endpoints

- In patients with RET-mutant MTC, median PFS was 25.8 months (prior C/V) and not reached (treatment naïve; Table 3; Figure 2A).
- Patients with previously treated RET-fp TC had a median PFS of 25.4 months (Table 3; Figure 2B).
- Median OS was not reached in any of the three populations (Table 3).

Figure 1. Best improvement from baseline in target lesion diameter in patients with RET-mutant MTC who A) had received prior C/V or B) were treatment naïve

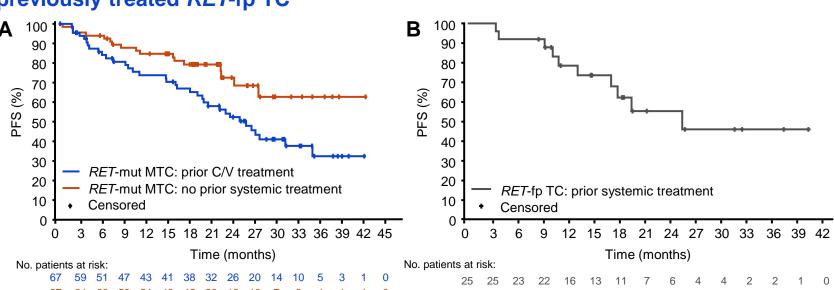

*By central radiology assessment per RECIST v1.1. ITT population. C/V, cabozantinib and/or vandetanib; ITT, intention-to-treat; MTC, medullary thyroid cancer; RECIST, Response Evaluation Criteria In Solid Tumors; SLD, sum of longest diameters.

Table 3. Survival endpoints (ITT population)

rabio of Garvivar oriapoints (111 population)					
	RET-mutant MTC: prior C/V (n=67)	RET-mutant MTC: treatment naïve (n=67)	RET-fp TC: prior systemic treatment (n=25)		
Median PFS*, months [95% CI]	25.8 [19.7–35.0]	NR [27.5-NE]	25.4 [17.0–NE]		
18-month rate, % [95% CI]	66.9 [55.0–78.9]	79.4 [69.4–89.5]	62.3 [41.2–83.5]		
Median OS, months [95% CI]	NR [36.9-NE]	NR [NE-NE]	NR [17.7-NE]		
18-month rate, % [95% CI]	85.3 [76.3–94.2]	90.8 [83.7–97.8]	69.6 [48.9–90.4]		

*Assessed by BICR per RECIST v1.1. PFS results per EMA censoring rules. BICR, blinded independent central review; C/V, cabozantinib and/or vandetanib; CI, confidence interval; EMA; European Medicines Agency; ITT, intention-to-treat; MTC, medullary thyroid cancer; NR, not reached; NE, not estimable; OS, overall survival; PFS, progression-free survival; RECIST, Response Evaluation Criteria In Solid Tumors; RET-fp TC, RET fusion-positive thyroid cancer.

Figure 2. PFS in A) patients with *RET*-mutant MTC and B) patients with previously treated *RET*-fp TC

C/V, cabozantinib and/or vandetanib; PFS, progression-free survival; RET-fp TC, RET fusion-positive thyroid cancer RET-mut MTC. RET-mutant medullary thyroid cancer.

Safety

- The RET-altered thyroid cancer safety population included 175 patients (Table 4):
- 29 patients (16.6%) experienced serious treatment-related adverse events (TRAEs)
- 17.9% of patients with RET-mutant MTC reported serious TRAEs; the most frequent was pneumonitis (2.8%)
- Serious TRAEs (one event each: anaemia, dizziness, hypotension and pneumonitis) were reported in 3/30 (10.0%) of patients with RET-fp TC
- One patient died due to a TRAE (pneumocystis jirovecii pneumonia)
- TRAEs led to dose reduction or discontinuation in 52.6% and 5.7% of patients, respectively.

Table 4. Safety summary for TRAEs

RET-altered thyroid cancer safety population (N=175)			
RET-mutant MTC safety population (n=145)	RET-fp TC safety population (n=30)		
142 (97.9)	28 (93.3)		
26 (17.9)	3 (10.0)		
91 (62.8)	16 (53.3)		
77 (53.1)	15 (50.0)		
87 (60.0)	15 (50.0)		
8 (5.5)	2 (6.7)		
	RET-mutant MTC safety population (n=145) 142 (97.9) 26 (17.9) 91 (62.8) 77 (53.1) 87 (60.0)		

Adverse events were coded using MedDRA 19.1. MTC, medullary thyroid cancer; RET-tp TC, RET fusion-positive thyroid cancer; TRAE, treatment-related adverse event.

CONCLUSIONS

In this updated analysis, pralsetinib continues to show efficacy and a manageable safety profile in patients with RET-altered thyroid cancer.

SUMMARY

52.2%: *RET-*mutant MTC with prior C/V

71.6%: treatment-naïve **RET-mutant MTC**

84.0%: previously treated RET-fp TC

Consistent safety profile

Affiliations

¹Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, Texas, USA; Email: mhu@mdanderson.org; ²Department of Investigational Cancer Cherapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA; ³Division of Medical Oncology, Mayo Clinic, Rochester, Minnesota, USA; ⁴Earle A. Chiles Research Institute, Providence Portland Medical Center, Portland, Oregon, USA; ⁵West German Cancer Center, University of California Irvine, Orange, California, USA; ⁷Department of Endocrine Oncology, Gustave Roussy, Villejuif, France; ⁸European Institute of Oncology, IRCCS, and University of Milano, Milan, Italy; ⁹Center for Head and Neck Cancers, Massachusetts General Hospital, Boston, Massachusetts, USA; ¹⁰Vall d'Hebron Institute of Oncology, Hospital Universitario Vall d'Hebron, Barcelona, Spain; ¹¹Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, Missouri, USA; 12 Nuclear Medicine and Thyroid Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; 14Department of Medical Oncology, Centre Léon Bérard, Lyon, France; 15Yonsei University College of Medicine, Yonsei Cancer Center, Seoul, Republic of Korea; 16Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan; 17Biostatistics, F. Hoffmann-La Roche Ltd, Basel, Switzerland; 18Clinical Development Oncology, Blueprint Medicines Corporation, Cambridge, Massachusetts, USA; 19Global Product Development Oncology, Sydney Kimmel Cancer Center, Jefferson University, Philadelphia, Pennsylvania, USA; 19Global Product Development Oncology, Sydney Kimmel Cancer Center, Jefferson University, Philadelphia, Pennsylvania, USA; 19Global Product Development Oncology, Sydney Kimmel Cancer Center, Jefferson University, Philadelphia, Pennsylvania, USA; 19Global Product Development Oncology, Sydney Kimmel Cancer Center, Jefferson University, Philadelphia, Pennsylvania, USA; 19Global Product Development Oncology, Sydney Kimmel Cancer Center, Jefferson University, Philadelphia, Pennsylvania, USA; 19Global Product Development Oncology, Sydney Kimmel Cancer Center, Jefferson University, Philadelphia, Pennsylvania, USA; 19Global Product Development Oncology, Sydney Kimmel Cancer Center, Jefferson University, Philadelphia, Pennsylvania, USA; 19Global Product Development Oncology, Sydney Kimmel Cancer Center, Jefferson University, Philadelphia, Pennsylvania, USA; 19Global Product Development Oncology, Sydney Kimmel Cancer Center, Jefferson University, Philadelphia, Pennsylvania, USA; 19Global Product Development Oncology, Sydney Kimmel Cancer Center, Jefferson University, Philadelphia, Philade

Disclosures

Mimi I. Hu reports steering committee (no financial re-imbursement) for Eli Lilly & Co; institutional research funding from Eli Lilly & Co; and has served as a co-investigator for Eli Lilly & Co and Roche studies.

Acknowledgements

This study was conducted by Blueprint Medicines and F. Hoffmann-La Roche Ltd (study sponsor). Further statistical support was provided by Jerome Chague of F. Hoffmann-La Roche Ltd and Hui Zhang of Blueprint Medicines. Third party medical writing assistance, under the direction of the authors, was provided by Lynn Cairncross-Kashorte, MA, of Ashfield MedComms, an Inizio company, and was funded by F. Hoffmann-La Roche Ltd.

References

- 1. Subbiah, et al. Cancer Discov 2020
- 2. Viola, et al. Endocr Relat Cancer 2016
- 3. Brose, et al. Lancet Oncol 2021 4. Fleeman, et al. BMC Cancer 2019
- 5. Subbiah, et al. Lancet Diabetes Endocrinol 2021 6. Mansfield, et al. J Clin Oncol 2022

