

### Introduction to Neuromyelitis Optica Spectrum Disorder (NMOSD)

Optic nerve



#### **Contents & learning objectives**

| Learning objective                                                                                                                        | Content                           | Slide number |
|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------|
| 1. Gain an overview of the pathophysiology of NMOSD                                                                                       | Disease overview                  | 3            |
| <ol> <li>Understand which individuals are more at risk based on their gender, ethnicity, and<br/>age</li> </ol>                           | Prevalence of NMOSD               | 4            |
| <ol><li>Learn the hallmark symptoms and characteristics of NMOSD, along with the most<br/>common pattern of disease progression</li></ol> | Clinical characteristics of NMOSD | 8            |
| 4. Understand the risks associated with NMOSD relapses                                                                                    | The role of relapses in NMOSD     | 11           |
| Summary                                                                                                                                   |                                   |              |

# NMOSD is a rare, debilitating autoimmune disease of the CNS, characterized by lesions in the spinal cord, optic nerve, and brain stem

NMOSD is a heterogeneous disease, with a **complex and multifaceted pathophysiology**<sup>1,2</sup>

In NMOSD, symptoms are caused by **immune-mediated demyelination** and **damage to axons** in the spinal cord, optic nerve, and brain stem<sup>3–6</sup>

The exact mechanisms by which neurological injury occurs are not fully understood, but a number of inflammatory processes have been found to drive NMOSD disease activity<sup>7,8</sup> **Healthy neuron** 

Has normal axonal message conduction



#### **Demyelinated neuron**

Axonal message can be interrupted or not complete



Figure adapted from NMO UK 20127

CNS, central nervous system; NMOSD, neuromyelitis optica spectrum disorder.

1. Guthy Jackson Foundation Patient Resource Guide (Third Édition). Available at: Link. Accessed September 2020; 2. Weinshenker BG, Wingerchuk DM. Mayo Clin Proc 2017;92:663–679; 3. Wingerchuk DM et al. Neurology 2015;85:177–189; 4. Papadopoulos MC et al. Nat Rev Neurol 2014;10:493–506; 5. Ghezzi A et al. J Neurol 2004;251:47–52; 6. Wingerchuk DM et al. Lancet Neurol 2007;6:805–815; 7. NMO UK. Neuromyelitis Optica. A guide to the condition. March 2012. Available at: Link. Accessed August 2020; 8. Glisson GC. UpToDate<sup>®</sup> Review on Neuromyelitis Optica Spectrum Disorders (August 2020). Available at: Link. Accessed September 2020.

#### NMOSD has an estimated global prevalence of 1.82 per 100,000

- NMOSD exists worldwide, but few studies have assessed the prevalence of NMOSD across different regions
- A systematic review and meta-analysis of nine studies (covering 1993–2013) reported a global prevalence of NMOSD of 1.82 per 100,000
- Prevalence of NMOSD is likely to be underreported due to patients never receiving a diagnosis or being misdiagnosed with another auto-immune disorder



Study type: systematic review; search period: 1985 to 2015; number of studies included: 9.

#### Prevalence of NMOSD per 100,000 (95% confidence interval)<sup>1</sup>

NMOSD, neuromyelitis optica spectrum disorder; NR, not reported. Etemadifar M et al. *Mult Scler Int* 2015;2015:174720.



## NMOSD is more common among women than men, with female to male ratios ranging from approximately 1.8:1 to 21:1<sup>1–12</sup>



 It is worth noting that the female-to-male ratio in NMOSD is significantly affected by whether the patient has autoantibodies against aquaporin-4 (AQP4-IgG), which are present in at least two-thirds of patients with NMOSD – see module Pathophysiology of NMOSD and the Role of IL-6 for further details on AQP4-IgG

- In AQP4-IgG-seropositive NMOSD, the female:male ratio is around 9:1, whereas in seronegative NMOSD, it is much lower – around 2:1<sup>13</sup>

NMOSD, neuromyelitis optica spectrum disorder.

1. Kuroiwa Y et al. Neurology 1975;25:845–851; 2. Merle H et al. Opthalmology 2007;114:810–815; 3. Cabre P et al. Rev Neurol (Paris) 2009;165:676–683; 4. Cabrera-Gomez JA et al. J Neurol 2009;256:35–44; 5. Asgari N et al. Neurology 2011;76:158901595; 6. Cossburn M et al. Eur J Neurol 2012;19:655–659; 7. Jacob A et al. J Neurol 2013;26:2134–2137; 8. Domingos J et al. Clin Neurol Neurol Neurol Neurol Neurol Sci 2016;15:209–213; 12. Pereira WL et al. Acta Neuropsychiatr 2017;29:170–178; 13. Gold S et al. Semin Immunopathol 2019;41:177–188.



## While anyone can be diagnosed with NMOSD, the disease appears to be more common among non-Caucasian individuals

 Recent studies suggest that, compared with Caucasian populations, people of Asian or African ancestry have a higher tendency to develop NMOSD<sup>1,2</sup>



Prevalence of NMOSD among Whites/Caucasians is around 1 in 100,000<sup>1</sup>



Among East Asians (Japanese, Chinese, Korean), the prevalence is around 3.5 in 100,000<sup>1</sup>



Prevalence of NMOSD in Black populations may be up to 10 in 100,000<sup>1</sup>

1. Hor JY et al. Front Neurol 2020;11:501; 2. Guthy Jackson Foundation Patient Resource Guide (Third Edition). Available at: Link. Accessed September 2020.



# The majority of patients with NMOSD are diagnosed between 30–40 years of age

Patients typically present in their 30s,<sup>1–8</sup> but can be diagnosed in old age (12%) and in early childhood (5%).<sup>9</sup> Children are usually diagnosed between 10–14 years of age, although the disease can develop at any stage of childhood<sup>10</sup>



NMOSD, neuromyelitis optica spectrum disorder.

1. Merle H et al. Opthalmology 2007;114:810–815; 2. Cabre P et al. Rev Neurol (Paris) 2009;165:676–683; 3. Collongues N et al. Neurology 2010;74:736–742; 4. Asgari N et al. Neurology 2017;16:1589–1595; 5. Altintas O et al. Neurologist 2015;20:61–66; 6. Domingos J et al. Clin Neurol Neurosurg 2015;134:79–84; 7. Kashipazha D et al. Iran J Neurol 2015;14:204–210; 8. Papais-Alvarenga RM et al. PLoS One 2015;10:p.e0127757; 9. Quek AML et al. Arch Neurol 2012;69:1039–1043; 10. Great Ormond Street Hospital NHS Trust. NMOSD. Available at: Link\_Accessed August 2020; 11. Seok JM et al. J Neurol Sci 2016;15:209–213.

loch

#### NMOSD most commonly presents as optic neuritis or transverse myelitis

Six core NMOSD clinical characteristics have been defined, including optic neuritis and transverse myelitis<sup>1</sup>



\*Study retrospectively evaluated 292 Chinese AQP4-IgG-positive patients diagnosed with NMO/NMOSD based on the 2006 NMO and 2015 NMOSD diagnostic criteria. †As transverse myelitis; ‡With NMOSD-typical diencephalic MRI lesions. AQP4-IgG, aquaporin-4 immunoglobulin G; MRI, magnetic resonance imaging; NMO, neuromyelitis optica; NMOSD, neuromyelitis optica spectrum disorder. 1. Wingerchuk DM et al. *Neurology* 2015;85:177–189; 2. Long Y et al. *Front Neurol* 2017;28;8:62.



# Optic neuritis and transverse myelitis associated with NMOSD can cause a wide range of signs and symptoms

• **Characteristic symptoms** include potentially severe motor and sensory impairment, vision loss, fatigue, and pain<sup>1–3</sup>



Brain

#### NMOSD patients with ON can present with:

- Retrobulbar (behind the eye) pain and/or pain on eye movement<sup>4</sup>
- Disturbed color vision, including color desaturation<sup>4</sup>
- Visual impairment that often persists for an extended duration and can be permanent<sup>5–8</sup>
- Acute ON attack-related functional blindness in one or both eyes<sup>4</sup>

### NMOSD patients with TM can present with:

- Leg and/or arm muscle weakness<sup>9</sup>
- Altered limb sensations (pins and needles, numbness)<sup>9</sup>
- Bladder and bowel problems<sup>9</sup>
- Back or limb pain<sup>9</sup>

NMOSD, neuromyelitis optica spectrum disorder; ON, optic neuritis; TM, transverse myelitis.

1. SRNA. Available at: Link. Accessed September 2020; 2. Traboulsee A et al. *Lancet Neurology* 2020;19:402–412; 3. Seok JM et al. *PLoS One* 2017;12:e01772303; 4. Jarius S et al. *J Neuroinflammation* 2016;13:280; 5. Seok JM et al. *J Neurol Sci* 2016;368:209–213; 6. Kitley J et al. *Brain* 2012;135:1834–1849; 7. Collongues N et al. *Neurology* 2010;74:736–742; 8. Bizzoco E et al. *J Neurol* 2009;256:1891–1898; 9. NMO UK. Neuromyelitis Optica. A guide to the condition. March 2012. Available at: Link. Accessed August 2020.

Spinal cord



# In addition to the characteristic symptoms, patients with NMOSD can present with disease-typical MRI features

#### **Spinal cord lesions**



#### **Brain lesions**



Reproduced from Dutra BG et al. 2018.

MRI, magnetic resonance imaging; NMOSD, neuromyelitis optica spectrum disorder. Dutra BG et al. *Radiographics* 2018;38:169–193.

#### **Optic nerve lesions**





### NMOSD shares a number of clinical features with multiple sclerosis, but has a different disease course

- Unlike MS, patients with NMOSD experience an accumulation of neurological disability that is almost exclusively associated with relapses<sup>1,2</sup>
- 5 years after disease onset, neurological disability may be significantly more severe in patients with NMOSD vs MS<sup>2</sup>

|                                                                 | NMOSD | MS  |
|-----------------------------------------------------------------|-------|-----|
| Accumulation of disability with relapses <sup>1,2</sup>         | Yes   | Yes |
| Accumulation of disability outside of relapses <sup>1,2</sup>   | Rare  | Yes |
| Spontaneous improvement of neurological disability <sup>2</sup> | No    | Yes |

MS, multiple sclerosis; NMOSD, neuromyelitis optica spectrum disorder. 1. Kawachi I et al. *J Neurol Neurosurg Psychiatry* 2017;88:137–145; 2. Akaishi T et al. *Sci Rep* 2020;10:13890.



# Patients with NMOSD generally experience a relapsing disease course, with frequent, severe relapses that can directly cause accumulating disability

- Following the first (onset) attack, up to 90% of patients with NMOSD show an episodic relapsing disease course – of these, up to 60% relapse within 1 year; 90% within 3 years<sup>1,2</sup>
  - –A relapse is typically defined as any attack (i.e. worsening of neurological symptoms) that takes place after the first (onset) attack
- Preventing relapses and reducing the impact of NMOSD-associated symptoms are, therefore, the foremost disease management priorities<sup>3</sup>



CNS, central nervous system; NMO, neuromyelitis optica; NMOSD, neuromyelitis optica spectrum disorder.

1. Kitley J et al. Brain 2012;135:1834–1849; 2. Wingerchuk DM et al. Lancet Neurol 2007;6:805–815; 3. Weinshenker BG et al. Neurology 2015;84:1805–1815. 4. Kawachi I et al. J Neurol Neurosurg Psychiatry 2017;88:137–145;

# A single NMOSD relapse can cause permanent neurological damage and disability

- Most relapses of NMOSD worsen over several days, then improve slowly, but often incompletely, over weeks or months<sup>1</sup>
- Successive relapses are associated with accumulating disability, reflected by increasing EDSS scores, due to the frequency and severity of attacks<sup>1,2</sup>
- Predictors of a worse prognosis include the number of relapses in the first 2 years of disease activity, and the severity of the relapse<sup>1,4</sup>
  - Relapses that result in an increase in EDSS of ≤2.5 have a nearly two-fold better chance of complete recovery compared with those with a severity of ≥3.0<sup>4</sup>





Within **5 years, 50%** of patients with NMOSD require the use of a **wheelchair** and **62%** of patients are **blind**<sup>3</sup>

EDSS, Expanded Disability Status Scale; NMOSD, neuromyelitis optica spectrum disorder.

1. Wingerchuk DM et al. Lancet Neurol 2007;6:805-815; 2. Ghezzi A et al. J Neurol 2004;251:47-52; 3. Kessler RA et al. Neurol Neuroinflamm 2016;3:e269; 4. Banerjee A et al. Mult Scler Relat Disord 2019;28:60-63.



### Patients with NMOSD have reduced life expectancy, with death often attributable to a relapse

- As diagnosis and treatment has developed, mortality has been shown in contemporary studies to be considerably improved (6–15%)<sup>1–3</sup> versus older landmark studies (21–32%)<sup>4–6</sup>
- However, even with low duration of disease, mortality rates are still a concern<sup>1–6</sup>



#### Mortality rates in studies of NMOSD<sup>1–6</sup>

\*Total study population. <sup>†</sup>Population with African ancestry

NMOSD, neuromyelitis optica spectrum disorder.

1. Kitley J et al. Brain 2012;135:1834–1849; 2. Jarius S et al. J Neuroinflammation 2012;9:14; 3. Mealy MA et al. Neurol Neuroinflamm 2018;5:e468; 4. Wingerchuk DM et al. Neurology 1999;53:1107–1114; 5. Wingerchuk DM et al. Neurology 2003;60:848–853; 6. Cabre P et al. J Neurol Neuroinflamm 2018;5:e468; 4. Wingerchuk DM et al. Neurology 1999;53:1107–1114; 5. Wingerchuk DM et al. Neurology 2003;60:848–853; 6. Cabre P et al. J Neurol Neurosurg Psychiatry 2009;80:1162–1164;

Roche

# AQP4 autoantibodies are a specific NMOSD disease marker, while the pathophysiology of seronegative disease remains unclear



Over two-thirds of patients have been shown to have detectable serum antibodies that target AQP4-IgG, which are highly specific for clinically diagnosed NMOSD<sup>1,2</sup>



This means that **up to one third** of patients with NMOSD are **AQP4-IgG seronegative**<sup>2,3</sup>



The underlying pathophysiology of seronegative disease is heterogenous and may represent a group of diseases with similar clinical presentation, but with distinct underlying pathophysiologies<sup>1,4–6</sup>



Some AQP4-IgG seronegative patients may have autoantibodies against MOG-IgG (discussed in Module 1.8),<sup>1,4–6</sup> and are known to have different clinical outcomes to AQP4-seropositive NMOSD<sup>1,3,4</sup>

AQP4, aquaporin-4; AQP4-IgG, aquaporin-4 immunoglobulin G; MOG, myelin oligodendrocyte glycoprotein; NMOSD, neuromyelitis optica spectrum disorder

1. Wingerchuk DM et al. Neurology 2015;85:177–189; 2. Lennon VA et al. Lancet 2004;364:2106–2112; 3. 7. Höftberger R et al. Mult Scler 2015;21:866–874; 4. Papadopoulos MC et al. Nat Rev Neurol 2014;10:493–506; 5. Reindl M et al. Nat Rev Neurol 2013;9:455–461; 6. Mader S et al. Neuroinflammation 2011;8:184.



#### Summary



NMOSD is a rare, debilitating autoimmune disease of the CNS, characterized by inflammatory lesions primarily in the optic nerves and spinal cord<sup>1</sup>



NMOSD exists worldwide with a reported global prevalence of 1.8 per 100,000 people<sup>2</sup>

 Patients typically present with NMOSD in their 30s–40s, but can be diagnosed in old age and in early childhood, and the disease is more common in non-Caucasian women<sup>3,4</sup>



NMOSD commonly presents as ON or TM, causing potentially severe motor and sensory impairment, bladder dysfunction, vision loss, pain, and other debilitating symptoms<sup>1,4–6</sup>



Patients with NMOSD generally experience a relapsing disease course, with frequent, severe relapses that can directly cause accumulating disability<sup>1,7</sup>

• Preventing attacks and reducing symptoms are the foremost disease management priorities in NMOSD<sup>8</sup>

CNS, central nervous system; NMOSD, neuromyelitis optica spectrum disorder; ON, optic neuritis; TM, transverse myelitis.

1. Wingerchuk DM et al. *Lancet Neurol* 2007;6:805–815; 2. Etemadifar M et al. *Mult Scler Int* 2015;2015:174720; 3. Quek AML et al. *Arch Neurol* 2012;69:1039–1043; 4. Guthy Jackson Foundation Patient Resource Guide (Third Edition). Available at: Link. Accessed September 2020; 5. SRNA. Available at: Link. Accessed August 2020; 6. Traboulsee A et al. *Lancet Neurol* 200;19:402–412; 7. Ghezzi A et al. *J Neurol* 2004;251:47–52; 8. Weinshenker BG et al. *Neurol* 2015;84:1805–1815.

